Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s.

نویسندگان

  • T E Bapiro
  • A C Egnell
  • J A Hasler
  • C M Masimirembwa
چکیده

In this study we have evaluated the application and reliability of using fluorescence (FLUO)-based high throughput screening assays with recombinant CYPs (rCYP). This was accomplished by screening 29 clinically important antiparasitic drugs for inhibition of the five major drug-metabolizing CYPs (-1A2, -2C9, -2C19, -2D6, and -3A4). Data from FLUO/rCYP assays were compared with that obtained by conventional HPLC assays using human liver microsomes (HLM) and rCYPs. The K(i) values showed good correlations: FLUO/rCYP and HPLC/rCYP (r(2) = 0.81), HPLC/rCYP and HPLC/HLM (r(2) = 0.82), and FLUO/rCYP and HPLC/HLM (r(2) = 0.72). Niclosamide had substrate-dependent contrasting effects on CYP2C9 activity with an apparent activation (400%) of 7-methoxy-4-trifluoromethylcoumarin demethylase activity and potent inhibition (K(i) = 6.00 microM) of diclofenac 4-hydroxylase activity. Potent inhibitors of CYP1A2 were artemisinin, dihydroartemisinin, thiabendazole, primaquine, and niclosamide (K(i) = 0.43, 3.67, 1.54, 0.22, and 2.70 microM, respectively). Proguanil, cycloguanil, amodiaquine, and desethylamodiaquine inhibited CYP2D6 (K(i) = 6.76, 5.97, 2.1, and 4.13 microM, respectively). Considering the C(max) of these drugs, artemisinin, thiabendazole, primaquine, amodiaquine, and desethylamodiaquine may cause clinically important interactions because they are predicted to inhibit 67 to 99% of the activities of the CYPs they interact with. In addition, our results suggest CYP1A2 inhibition as the mechanism behind the observed thiabendazole/theophylline and primaquine/antipyrine interactions in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high throughput screening assay to screen for CYP2E1 metabolism and inhibition using a fluorogenic vivid p450 substrate.

Large-scale screening of multiple compound libraries and combinatorial libraries for pharmacological activity is one of the novel approaches of the modern drug discovery process. The application of isozyme-specific high-throughput screening (HTS) assays for characterizing the interactions of potential drug candidates with major human drug-metabolizing cytochrome p450 enzymes (p450s) is newly be...

متن کامل

Directed Improvement of i-Photina Bioluminescence Properties, an Efficient Calcium-Regulated Photoprotein

  Photoproteins are excellent reporter systems because they don’t have virtually background signal. Aequorin is the most well-known photoprotein. Three improved engineered photoproteins photina, i-photina and c-photina, were also recently developed and optimized for generation of Ca2+ mobilization assays precisely. The total light emission is greater than aequorin and their reacti...

متن کامل

Evaluation of a Novel Metric for Quality Control in an RNA Interference High Throughput Screening Assay

The application of genome scale RNA interference (RNAi) relies on the development of high quality RNAi high throughput screening (HTS) assays. An important quality control (QC) characteristic in an HTS assay is how well the positive controls, samples, and negative controls can be separated from each other in the assay. Signal-to-noise ratio, signal-to-background ratio, Z-factor and Z’-factor ha...

متن کامل

DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

BACKGROUND Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not com...

متن کامل

Cell-Based Assays in High-Throughput Screening for Drug Discovery

Drug screening is a long and costly process confronted with low productivity and challenges in using animals, which limit the discovery of new drugs. To improve drug screening efficacy and minimize animal testing, recent efforts have been dedicated to developing cell-based high throughput screening (HTS) platforms that can provide more relevant in vivo biological information than biochemical as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2001